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1 Introduction
In an earlier paper,1 I have discussed some of the conditions under which a scalar motion manifests in 
the conventional spatial reference system, and shown that the simple harmonic motion (SHM) of the 
photon is really a birotation. While it is clear that a SHM underlies the photon from the phenomena of 
interference and diffraction, the genesis of SHM, given only uniform speed (as in scalar motion), is not 
possible except through rotation. In a subsequent paper,2 I have elaborated on the characteristics of 
rotation and birotation, and shown how they result in observed phenomena, like circular polarization 
and angular momentum of photons.

In the present paper, several other characteristics of the photon phenomena that demonstrate, directly or 
otherwise, that the photon is basically a birotation are considered.

2 The Angular Momentum of Photons
We have seen1 that the photon is comprised of two equal and opposite rotations about an axis, with the 
axis being, normally, in the direction of translation of the photon. The total energy, E, of the photon is 
the sum of the energy of translation,  T, and the internal energy of rotation,  R. In the absence of any 
biasing factor, one can see that E is equally partitioned into T and R. Let

m = apparent mass of each component of the photon
I = moment of inertia of each component of the photon
±ω = angular velocities of either component
ħ = Planck's constant, h, divided by 2π
λ = wavelength of the photon
ν = frequency of the photon = ω / 2π
c = the speed of light = λ·ν

Then

T=R=
1
2

E=
1
2
ℏ ω  (1)

Considering both component rotations:

T=2(1
2

m c2)=1
2
ℏ ω

or
m=ℏ ω

2 c2

 (2)

1 K.V. K. Nehru, “The Law of Conservation of Direction,” Reciprocity XVIII (3), (Autumn, 1989), pp. 3-6.
2 K.V. K. Nehru, “On the Nature of Rotation and Birotation,” Reciprocity XX (1), (Spring, 1991), pp. 8-12.

Reciprocity 25 № 3 page 11 Copyright ©1996 by ISUS, Inc. All rights reserved. Rev. 13

http://reciprocalsystem.org/PDFa/The%20Law%20of%20Conservation%20of%20Direction%20(KVK,%20Nehru).pdf
http://reciprocalsystem.org/PDFa/On%20the%20Nature%20of%20Rotation%20and%20Birotation%20(KVK,%20Nehru).pdf


2 The Photon as Birotation

R=2(1
2

I ω
2)=1

2
ℏ ω

or

I =
ℏ

2ω

 (3)

Turning now to angular momentum, ζ, of each component rotation, we obtain using Equation (3)

ζ=I ω=±
1
2
ℏ  (4)

The ± sign occurs since ω could be ±. The angular momentum of the photon itself works out to be

L=±ℏ or 0  (5)

since the two component rotations could either be parallel (+ζ +ζ or -ζ -ζ) or antiparallel (+ζ -ζ or -ζ 
+ζ). It  might be noted that L is independent of ω and turns out to be the same for photons of all  
frequencies. This agrees with experimental observations.

3 The Doppler Shift
R. A. Waldron3 extends the above analysis to the calculation of Doppler shifts. Suppose a photon of 
frequency ν0 was emitted by a source that is stationary with respect to the observer, then

E0=hν0=T +R=mc2
+m c2

=2 mc2  (6)

since T = R.

However, if the observer is approaching the source with a velocity  v,  then the translational energy 
would be 2 [½m (c + v)2] instead of 2 (½mc2), while the rotational energy remains unchanged at Iω2 = 
mc2. The measuring apparatus absorbs this energy, but this cannot be distinguished from the effect of 
absorbing a photon of frequency ν such that

E=hν=m(c+v )
2
+mc2

=2m c2(1+
v
c
+

1
2

v2

c2)  

Substituting from Equation (6) in the above and writing v/c = β, we have

ν
ν0

=1+β+
1
2
β

2  (7)

Changing frequencies to wavelengths, we have the Doppler shift formula

λ
λ0

=(1+β+
1
2
β2)

−1

=1−β+
1
2

β2−
1
4
β4+...  (8)

which agrees well with the orthodox Doppler formula

3 Waldron, R. A., “The Spinning Photon,” Speculations in Science and Technology, Volume 5, Number 2, (1983), pp. 171-
181.
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(since β is usually small, terms of order greater than 2 could be ignored).

4 Dispersion
In ordinary refraction, a light beam incident on a medium at an angle  i, changes direction and gets 
refracted at an angle  r in the medium. This change in direction could be shown as being due to the 
reduction in the speed of light from c to v in the medium, and that the following relation holds good:

sin(i)
sin (r )

=
c
v
=n  (10)

This ratio n is called the index of refraction. The fall in speed is, of course, due to the additional time 
involved in the net time displacement of the material medium through which the photon traverses. At 
this juncture we would also like to note that, for a given substance, the refractive index n increases as a 
power function of the frequency of light, which implies that the fall in speed on entering the medium is 
more for higher frequencies. This, of course, results in the phenomenon of dispersion, which is defined 
as the change in speed of light in a medium that is engendered by a change in wavelength or frequency 
of  the  light.  Larson  has  computed  the  refractive  index  and  the  dispersion  coefficient  of  several 
substances from the first principles of the Reciprocal System.4

The relation between the refractive index n of a medium and the frequency ν could be derived from the 
theory we have been developing as follows. On entering the medium, the photon is located in the time 
displacement of the atom, instead of the space unit of the outward progression; rather, it is the atom, 
which has been moving inward in space, enters the photon, the latter being stationary with regard to the 
natural reference system. Consequent to this, the datum (initial) level from which the photon’s apparent 
mass is reckoned gets altered.

It might be noticed that we have been calling m the apparent mass of the photon. Since mass is three-
dimensional inverse speed, whereas the photon is only a one-dimensional (rotational) speed, the photon 
does not have a true mass. However, it does have intrinsic angular momentum, since the photon is 
rotation per se, and this manifests as an apparent mass, given by

m= I ω
2

c2  (11)

We may truly call it “spin mass.” The reason why the translational energy of the photon equals its 
rotational energy (Equation (1)) should now be obvious,

T=m c2
=( I ω

2

c2 )c2
= I ω

2
=R  

The apparent mass of the photon is entirely spin mass.

Let ω1, be the rotational speed of the atom of the medium. The reference level for the rotational energy 
of the photon on entering the atom gets changed since it must now be reckoned from the level of the  

4 Larson, D. B., The Structure of the Physical Universe, (North Pacific Publishers, Portland, OR, 1959), pp. 125-131.
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atomic rotation, and not that of free space. Consequently,  the change in rotational energy could be 
expressed as:

I ω
2
−I ω1

2  (12)

The introduction of the new datum level for rotation has, of course, a corresponding effect of changing 
the datum level of the spin mass. This we express by writing (using Equation (11)):

m1=I
ω1

2

c2  (13)

where m1 is the mass equivalent of the datum shift of rotation.

In the general  situation,  a  unit  of  the apparent  mass  of the photon need not  be equal  in  (natural) 
magnitude to a unit of the apparent mass pertaining to atomic rotation, since the latter has a different 
reference point and is contingent on the chemical composition and the crystal structure. This engenders 
a scale difference between the two. Let this scale factor be f. Then m1 units of the apparent mass from 
the point of view of the atomic rotational system are equivalent to f·m1, units from the point of view of 
the photon rotational system. Thus, the apparent mass of the photon, as reckoned from the atomic 
system in which it is now located, turns out to be:

m− f m1  (14)

With the new initial  levels  in  the  medium, the speed of  propagation readjusts  itself  such that  the 
rotational and the translational energies of the photon become once again equal, with reference to these 
new initial levels. Thus:

I ω
2
−I ω1

2
=(m− f m1)v2  (15)

where v is the speed of light in the medium. Substituting from Equations (11) and (13), and dividing 
throughout by I:

ω2−ω1
2=(ω2− f ω1

2)
v2

c2

or

c
2

v2 =
ω

2
− f ω1

2

ω2−ω1
2 =1+

(1− f )ω1
2

ω2−ω1
2

 (16)

Let

a=
1

f −1
and b=4π

2 a

ω1
2

 (17)

Since c/v = n, we finally arrive at

n2
=1+

1

a−bν
2

 (18)
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It might be noted that the relation derived from the conventional electromagnetic theory5 is identical to 
this. Comparison with data shows that the equation is quite accurate (correlation coefficient > 0.999).

In the case where there exists more than one rotation ω1 in the medium, we proceed as follows. Let n1 

be the refractive index calculated on the basis of a single atomic rotation ω1 (as though it exists alone) 
and let there be  r such different rotations. It can be seen that the overall refractive index  n0 is the 
R.M.S. (root mean square) value of n1. In other words

n0
2
=∑

i=1

r

pi ni
2  (19)

where pi is the proportion of each ωi among the total number of rotations, such that

∑
i=1

r

pi=1  (20)

This is because the quantity n2 (= c2/v2), being the square of the inverse speed in natural units, actually 
represents the time region equivalent of energy (remembering the second power relation pertaining to 
the time region). Consequently, Equation (19) gives simply the average time region energy, so that n0 

becomes the effective refractive index.

4.1 Anomalous Dispersion

Any complete theory of dispersion must also account for the so-called anomalous dispersion. Normally, 
the  refractive  index  increases  with  an  increase  in  frequency,  but  beyond  some  sufficiently  high 
frequency, it is found that the refractive index becomes abnormally low. A prism made of an alcoholic 
solution of fuchsine (an analine dye), for example, refracts violet light less than red, although red, 
orange, and yellow appear in the normal order. An examination of Equation (18) reveals that this would 

indeed be the case when the frequency ν is very near the value √ a+1
b

, but greater than it.

5 Birefringence
This  is  the  phenomenon  of  double  refraction  and  is  exhibited  by  optically  anisotropic  crystalline 
substances, some examples being Icelandic spar, quartz, ice, tourmaline, apatite, borax, mica, topaz, 
etc. If a beam of light is made to pass through such a substance, it has been found that it gives rise to  
two beams, one of which corresponds to the single beam which would have been transmitted, had a 
substance like glass been used. This beam is called the ordinary (O) beam; the other, the extraordinary 
(E) beam.

Now in ordinary refraction, n is found to be constant for all incident angles. This is true of the O beam 
in the phenomenon of birefringence. But the E beam is found to vary with direction, thus implying that 
the speed of the E beam is dependent on direction. In some crystals, the E beam travels faster, and in  
some others, slower than the O beam. Moreover it is also observed that the O and E beams are plane 
polarized, with their planes of vibration being perpendicular to each other.

This behavior could readily be understood if we remember the birotational basis of the photon. If a 
certain quantity of rotational motion in the form of a birotation B(-α,+α) occurs in the crystal structure  

5 Robertson, J. K., Introduction to Optics, (Affiliated East-West Press, New Delhi, India, 1965), p. 307.
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such that its axis is parallel to the E beam, and phase coincident with that of the photons of the E beam, 
then the component angular speeds, -ω and +ω of the photon get changed such that they become -(ω+α) 
and +(ω+α). This apparent increase in frequency (relative to the medium) brings forth a corresponding 
fall in the translational speed, as in dispersion, causing the E beam to travel slower than the O beam. In 
the case that the operating birotation B compounds with the photon component speeds as -(ω-α) and
+(ω-α), the result would be that the E beam travels faster than the O beam.

It might be noted, in passing, that the supervening birotation B does not interact with the O beam as 
their respective planes of vibration do not coincide. It must be understood that the altered value of the E 
beam frequency within the medium is an effect of the change of the initial (datum) level (of rotation),  
and not an absolute change in the magnitude of ω. Consequently, on emerging from the medium, the 
photon frequency shows up as ±ω only.

6 Rotary Polarization

6.1 Optically Active Substances

There is a class of optically active substances which have the property of rotating the plane of vibration 
of light as it traverses them. Some rotate the plane of vibration to the left, and others to the right, and 
are consequently classified as  laevo-rotatory and  dextro-rotatory, respectively. It has been found that 
the angle of rotation is proportional to the thickness traversed, and also to the first approximation of the 
square of the frequency.

The explanation of the phenomenon comes out naturally from the birotational nature of the photon. Let, 
as before, -ω and +ω be the angular speeds of the two components of the photon. As it traverses this 
type  of  substance,  it  encounters  a  rotation,  say  R(+α,+α),  pertaining  to  the  molecules,  and  the 
component  rotations  get  modified  as  -(ω-α)  and  +(ω+α).  This  decrease  and  increase  in  speed 
magnitudes  of  the  two rotational  components  respectively  engender  corresponding  changes  in  the 
speeds of propagation, as in dispersion. This phenomenon may aptly be called circular birefringence. 
This  produces  a  phase  difference  between  the  two  rotational  components  of  the  photon  which  is 
proportional to the thickness. The end result is the rotation of the plane of vibration of the photon.

From the theory we have been developing, the angle of rotation of the vibrational plane can easily be 
worked out as follows. Let -(ω-α) = -ωl and +(ω+α) = +ω2. If t is the thickness of the medium, the time 
taken by the component ω1 to traverse it is

τ1=
t
v1

=
t
c

n1  (21)

where vl and n1, are the speeds of propagation, and the refractive index, respectively, of the component. 
Thus, the angle turned by this component during time τ1 is

θ1=τ1 ω1=
t
c

(n1 ω1)  (22)

Considering  similarly the other  component  ω2 of  the  photon,  the  net  angle turned through by the 
vibration plane will be
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ϕ=
θ2−θ1

2
=

1
2

t
c

(n2ω2−n1ω1)  (23)

since θ1 and θ2 are in opposite senses.

Changing from ω to ν and adopting Equation (18) for n and expanding the right hand side in series, we 
arrive at the following result

ϕ=
1
2

t
c

( A+B ν
2
+C ν

4
+...)  (24)

where the constants A, B, C, etc., are dependent on the material, and are functions of α, and the powers  
of ν are all even. Both the dependence on t and ν, of f are very accurately represented by Equation (24) 
as may be checked from observational values.

The parity of this  rotatory polarization would be opposite  to  that  of the above if  the encountered 
rotation in the medium is R(-α,-α), instead of R(+α,+α). In this case, the photon component rotations 
would be respectively -(ω+α) and +(ω-α).  It  should also be noted that if  the beam is reversed the 
original rotation (of the vibration plane) is annulled.

7 Rotation by Magnetic Field
It is also known that when some substances—many solids, liquids, and gases—traversed by a beam of 
plane polarized light are placed in a strong magnetic field, a rotation of the vibration plane occurs. The 
angle of rotation is found to be proportional to the strength of the magnetic field, and also the length of 
travel.

This is what is to be expected, since we know that the magnetic field is a two-dimensional rotational 
vibration. As explained earlier, this super-imposed rotation speeds up one component of the photon 
birotation, and slows down the other, resulting in the phase difference and consequent rotation of the 
vibration plane. The dependence on the field strength and the path length are likewise understandable. 
But what is not so readily apparent, is the result that if the beam is reversed, keeping the field direction 
the same, the sense of the rotation (of the vibration plane) will be opposite to the previous. So much so,  
that if a beam is reflected back and forth along the lines of force, the amount of rotation should be 
greater for the greater the number of reversals. This, of course, is exactly established experimentally.

8 Direct Measurement of the Photon’s Angular Momentum
Elsewhere,1 I  had  already  mentioned  how  the  angular  momentum  of  photons  could  be  directly 
measured.  Richard  Beth6 had  devised  an  ingenious  experimental  setup  that  directly  detected  and 
measured the effect. The heart of his apparatus consists of a circular half wave plate of quartz, hung by 
a fine filament and free to rotate. Beth contrives to pass a circularly polarized light beam through this 
plate twice, such that each time the beam passes, its circular polarization changes from CW to CCW, 
and thereby imparts to the disk, four times the angular momentum which would otherwise have been 
given,  were  the  beam merely to  be  absorbed.  Avoiding absorption  also  eliminates  the  problem of 
heating and pressure.

6 Beth, R. A., “Mechanical Detection and Measurement of the Angular Momentum of Light,” Physical Review, Volume 50 
(July, 15, 1936), pp. 115-125.
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9 The Zeeman Effect
When a light source is placed in a magnetic field, a single spectral line is replaced by a number of 
others. This separation of the spectral lines resulting from the action of a magnetic field on the source is 
called the Zeeman Effect. In the so-called normal Zeeman effect, when the direction of the light beam 
is perpendicular to the magnetic lines of force, instead of one spectral line, three are found; one with a  
wavelength the same as when the field is absent, a second with a wavelength slightly greater, and a  
third with a wavelength slightly less than the first. It is also found that all the three wavelengths are  
plane polarized, the vibration plane of the first line being along the lines of force, and that of the other 
two at right-angles to this direction. This is called the transverse Zeeman Effect.

On the other hand, if the direction of the field lines is parallel to the beam direction, we have the 
longitudinal Zeeman  Effect.  In  this  case,  the  original  wavelength  is  replaced by two,  one  with  a 
wavelength slightly greater, and the other with a wavelength slightly less than the normal; the beams 
being circularly polarized in opposite senses.

Figure 1: The Normal Zeeman Effect

Both these effects can be seen to follow directly from the birotational basis of photons. In Figure 1, the 
three mutually perpendicular dimensions of space are shown by the lines OX, OY, and OZ. The beam 
direction is OZ. The direction of the magnetic field is indicated by a thick arrow. The three possible 
orientations for the birotation in the system are shown by B1, B2, and B3. In  Figure 1(a), the field 
direction is along OY (being perpendicular to OZ). One or the other of these three birotations can emit 
photons  with  corresponding  rotational  components.  The  magnetic  field  has  two  effects  on  the 
birotations. Firstly, since the magnetic motion is rotational, the two components of the birotation with 
the axis parallel to the field direction alter their speeds of rotation, ±ω, one component speeding up and 
the other slowing down. In Figure 1(a) this happens to B1. Because of this, these two circular motions 
of B1 appear as vibrations of two different frequencies with their plane of vibration perpendicular to 
the field direction. Secondly, in the case of the two birotations B2 and B3, the plane of vibration will be 
parallel to the field direction. Thus, the vibration emitted from these will be along ab or cd (Figure
1(a)); in either case, the vibration appears plane-polarized in the direction of the field and its frequency, 
ω, is unaltered.
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(a) The Transverse Effect
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(b) The Longitudinal Effect
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In  Figure 1(b), we have the field direction coincident with OZ. The first result is the change in the 
speeds of the components of B1, which, therefore, emit two circularly polarized photons, one in the 
CW direction, and the other in the CCW direction, with the respective frequencies slightly less and 
slightly more than ω. Since the vibration direction in the case of B2 and B3 (ab and cd in Figure 1(b)) 
is along the longitudinal direction OZ, no beam gets emitted in this direction. We therefore do not have 
a spectral line with the original frequency, ω, in this case.

10 Summary
We have endeavored to show that deduction from the postulates of the Reciprocal System leads one to 
the concept that the simple harmonic motion of the photon is really a birotation. In fact, the apparent 
mass of a photon is shown to arise from its angular momentum.

A complete  theory  of  dispersion  of  light  has  been  developed.  Other  phenomena  considered  to 
demonstrate the birotational nature of the photon were the Doppler shift, double refraction, rotatory 
polarization, circular polarization, and the Zeeman Effects.
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